What’s an Algorithm?

• Instructions for doing a task
 • meal recipes
 • how-to’s
 • IKEA furniture assembly
 • programs

• Repeatable process

• Reproducible results
Algorithm Analysis

- Theoretical study of how algorithms perform
- Does how long it takes change when the input grows?
- What happens if we change underlying data structure?
- High-level view, unconcerned with mundane details
 - “Hardware? That costs money.”
 - “Operating System? Did you call IT?”
 - “Java? C++? Pseudocode is more than sufficient.”
What it is not

• Performance tuning/optimization concerning:
 • hardware
 • CPU vs GPU, Intel vs AMD, Nvidia vs AMD
 • HDD vs SDD
 • OS
 • Linux vs Windows vs OS X
 • language
 • C vs Java vs Fortran, etc.
 • compilers and settings
 • gcc vs MSVC
 • -O2 vs –O3
Nor is it

• Numerical analysis
 • Floating-point specific
 • Specific course, take if interested in scientific computing

• Empirical analysis/Benchmarking
 • Directly measuring performance
 • BASH `time`
 • `time` module
 • Have to worry about consistent runtime conditions
 • Same OS, hardware, no other programs running, etc.
 • (still very important activity, though!)
Bald-faced Lies

• “All simple operations take the same amount of time”
 • arithmetic: =, +, -, *, /, **
 • comparisons: <, >, <=, >=, !=, ==
 • element access: []
 • function calls
 • function returns

• “We have infinite RAM.”

• “Cache? Never heard of it.”
Theoretical Running Time

The sum total of all the simple operations, taking into account any looping or recursion.

• False in practice
 • Floating point division is slower than addition
 • Memory reads affected by cache coherency
 • finite RAM

• Our claim is that the practical gets overwhelmed by the theoretical as input grows, so we can ignore the practical (for now).
Worst Case Scenario

• Best case scenarios are often trivial
• Average case can be hard to verify
 • statistics and probability required
• Worst case relative often relatively easy to derive
 • by default we’ll be talking about worst case most of the time, with some notable exceptions later
Growth Functions

• $f : n \to t$
 • function from n to t
 • n is the size of the input
 • number of users
 • number of file entries
 • t is the time the algorithm takes to run on n
 • often in unspecified units
Growth Function Categories 1

• Constant, c
 • same t for every n

• Logarithmic, log n
 • can cut down n repeatedly
 • assume logarithm base 2 unless told otherwise

• Linear
 • as n grows, t grows

• Superlinear \((n \times \log(n))\)
 • can cut down n, but has to do it for each n
Growth Functions Categories 2

• Quadratic, \(n^{**2}\)
 • often due to nested loops

• Cubic, other Polynomial, \(n^{**3}, n^{**m}\)
 • often due to more nesting of loops, 3D grids

• Exponential, \(c^{**n}\)
 • compounding growth

• Factorial
 • \(n! = n \times (n-1) \times (n-2) \times \ldots \times 2 \times 1\)
 • if have to work with every permutation of \(n\) items
What We Want

• Polynomial or better
 • $n^3 >> n^2 >> n \log n >> n >> \log n >> c$
 • $>>$ means “much greater than” or “dominates”
 • n^3 dominates n, etc.

• World peace
What We Don’t Want

• Anything else
 • exponential, factorial
 • $c^n \ll n!$
 • even worse things we didn’t mention like Ackermann’s

• Caution:
 • c can be anything finite
 • 10^{18} is c, but HUGE, in a case like that, being constant doesn’t help

• Rabies
Growth Function Graphs

• (see link in web notes)
• note: the textbook likes to use log-log graphs
 • the slope of the line indicates growth
Asymptotic Analysis

Let f, g map \mathbb{Z}^+ to \mathbb{R}^+

- $f(n)$ is $O(g(n))$ if $\exists c \in \mathbb{R}$ and $n_0 \geq 1$ such that $f(n) \leq cg(n)$ for all $n \geq n_0$.
- $cg(n)$ is an upper bound for $f(n)$
- “f is big oh of g”

(fig 3.5 from textbook on white board)

(If you’re unfamiliar with this math notation, it’s in closer to plain English in the notes and textbook.)
Asymptotic Analysis, 2

Sometimes we find a lower bound. Same setup as before but change it so that if \(f(n) \geq cg(n) \) for all \(n \geq n_0 \) then \(f(n) \) is \(\Omega(n) \).

• “f is big omega of g”

If f is both big O of g and big \(\Omega \) of g, then f is big \(\Theta \) of g

• “f is big theta of g”

• big \(\Theta \) is the strongest statement
Comparative Analysis

• We’re only concerned with the unmodified dominant term

• \(f(n) = 10n^3 + 5n \)
 • “\(f \) has cubic growth” or “\(f \) is big \(O \) \(n \) cubed”

• as \(n \) grows, the sub-dominant terms and the constant factor become insignificant

• Chart of comparative runtimes
Caveats

• In theory, ignore coefficients, in practice can be significant
 • A is linear, B is superlinear “Oh, A has better asymptotic growth, we should use A.”
 • A is $1000000000n$, B is $n \log n$ “Oh, wait, B is better until ~62K and we never break 20K…”

• Programmer time is part of the real cost!
 • Runs in 5 minutes but takes a 40 hours to program vs runs in 10 minutes but only takes 1 hour to program
 • [xkcd: Is It Worth the Time?]