Multiway Search Trees

- non-binary search trees
- d-node
 - d number of children
 - has d-1 keys/node
 - child keys sorted between parent keys
 - keys in first child < parent’s key_1
 - keys in second child > key_1, < key_2
 - etc.
- e.g., B-trees invented by Bayer, McCreight (1972)
(2,4)-Trees

• aka 2-4 Trees, 2-3-4 Trees
• can have 2-, 3-, 4- nodes
• all external nodes at same depth
 • guarantees height is $O(\log n)$
 • sketch of proof in notes
(2,4)-Tree Insertion

• Search (similar to BST search)
• if 2-, 3- node, just insert
• if 4- node, overflow to 5- node
• to fix overflow
 • push 2^{nd} (or 3^{rd}) key to parent
 • split into 2-, 3- nodes (or 3-, 2-nodes)
 • check parent for overflow, may cascade to root!
(2,4)-Tree Deletion

- search
- if not at leaf, swap with beforehand leaf value
- delete item from leaf
- if leaf empty, check siblings
 - if 3-, 4- node sibling
 - push key up to parent, then pull key down from parent
 - if 2- node sibling
 - fuse with sibling, pull key from parent
- could have cascading underflows/fusions
(2,4)-Tree demo

- 2-3-4 trees are B trees with max degree = 4
- won’t implement because they are logically equivalent to red-black trees
Where We Stand

• $O(\log n)$ complexities, but...

• AVL trees
 • cascading rebalancings after deletion

• Splay trees
 • specific use cases

• $(2,4)$-Trees
 • cascading splits/fuses, non-binary
Red-Black Tree

• Invented by Guibas, Sedgewick (1978)
• binary tree version of (2-4)-Tree
 • back to simple BST searching
• rebalances, but not all the time
 • some rebalancing just changes “color”
Red-Black Tree Properties

• Root Property
 • Root is always black

• Red Property
 • Any children of a red node are black

• Depth Property
 • All nodes with 0 or 1 children have the same black depth
 • black depth is number of black ancestors

• Red-Black to (2,4) conversion steps in notes
 • (would probably never actually do, just for logical completeness)
Red-Black Mechanics

• Description longer than the code!
• Webnotes/textbook
• Best description I’ve come across is in
 • https://mitpress.mit.edu/books/introduction-algorithms

• red_black_tree.py
The Red-Black Tree Advantage

• Guaranteed limits on restructurings!
• Insertion – never more than 1
• Deletion – never more than 2

So while all the self-balancing trees have $O(\log n)$ complexities, in practice red-black will probably be faster.
Maps!

- Know the runtime complexities for the 5 essential map behaviors of all the concrete classes
- Be able to compare the tradeoffs of all the concrete classes
Reading the Sample Code

• Digression on factory method design pattern in webnotes
• Most of that is hidden, trust the API
C++ STL and Java SDK

- `std::vector`/`ArrayList`
 - dynamic array ~ Python list
 - recommended default data structure in C++

- `std::map`/`SortedMap`
 - balanced binary search tree
 - (usually a red-black tree)
 - when needing key lookups and sorted data

- `std::unordered_map`/`HashMap`
 - hash table ~ Python dictionary
 - when needing key lookups but don’t care about ordering